Свойства, упомянутые в предыдущей статье «Свойства нагревателей», сужают выбор до нескольких материалов. Наиболее распространенными материалами для нагревателей являются нихром, фехраль, дисилицид молибдена и карбид кремния. Эти материалы могут работать при высоких температурах из-за их устойчивости к высокотемпературному окислению. Другая группа состоит из графита, молибдена, вольфрама и тантала. Эти материалы окисляются при высоких температурах и используются только в вакууме или в печах, где атмосфера лишена кислорода.
Нихром является одним из наиболее широко используемых материалов для нагревательных элементов благодаря своей пластичности, высокому удельному сопротивлению и стойкости к окислению даже при высоких температурах. Наиболее распространенный состав никель-хромовых сплавов - 80/20 или 80% никеля, 20% хрома. Другие составы доступны в зависимости от производителя. Из-за своей высокой пластичности он обычно втягивается в проволоку при использовании в качестве нагревательного элемента. Обычное применение, которое демонстрирует это свойство, - это резаки для пенопласта с термоэлектрической проволокой. Максимальные температуры нагрева, достигаемые с помощью никель-хромовой проволоки, составляют от 1100 до 1200 ° C.
Этот тип широко известен под торговой маркой Kanthal. Ферритные железо-хром-алюминиевые сплавы Kanthal обычно имеют химический состав от 20 до 24% хрома, 4-6% алюминия и остальное железо. Нагреватели железо-хром-алюминий используются из-за их гибкости и меньшей плотности по сравнению с Ni-Cr. Они также могут генерировать более высокие температуры, чем нихромовая проволока, которая составляет от 1300 до 1400 ° C. Поскольку в качестве основного металла используется железо, этот сплав имеет меньшую цену, чем Ni-Cr, который состоит в основном из никеля. Обратной стороной использования сплавов фехраля является снижение прочности нагревателей при более высоких температурах.
Сплавы железо-хром-алюминий можно улучшить с помощью процесса, известного как порошковая металлургия. В этом процессе слиток сплава превращается в порошок и прессуется в матрицу. Затем его спекают или подвергают горячему прессованию (горячее изостатическое прессование) в атмосфере с регулируемой температурой для создания металлургической связи без полного плавления металлического порошка. Дисперсоиды добавляются в смесь сплава для усиления механических свойств материала с целью придания дополнительной прочности и ударной вязкости при более высоких температурах.
Дисилицид молибдена представляет собой тугоплавкий кермет (металлокерамический композит), который в основном используется в качестве материала нагревательного элемента. Это предпочтительный материал для высокотемпературных печей из-за его высокой температуры плавления и хорошей коррозионной стойкости. Нагревательные элементы из дисилицида молибдена производятся с помощью различных энергоемких процессов, таких как механическое легирование, синтез сгорания, ударный синтез и горячее изостатическое прессование.
Нагреватели типа MoSi₂ могут достигать температуры нагрева до 1750 ° C. Недостатками использования силицида молибдена являются его низкая ударная вязкость в условиях окружающей среды и ползучесть при высоких температурах. Его хрупкость при комнатной температуре требует очень осторожного обращения. Повышенная вязкость достигается при температуре перехода от хрупкого к пластичному состоянию около 1000 ° C. С другой стороны, более высокая скорость ползучести вызывает легкую деформацию нагревательного элемента при высоких температурах. Наиболее распространенным типом элемента MoSi2 является конструкция U-образного стержня с двумя стойками, которая обычно подвешивается через свод печи и располагается вокруг стенок печи. Доступны другие формы, часто в сочетании с керамическими изоляторами, которые обеспечивают как механическую поддержку, так и теплоизоляцию в виде единого пакета.
Это тип керамики, получаемый путем перекристаллизации или реакционного соединения зерен SiC при температурах выше 2100 ° C. Нагревательные элементы из карбида кремния представляют собой пористые тела (обычно 8-25%), в которых атмосфера печи может реагировать через поперечное сечение материала. Весь нагревательный элемент может постепенно окисляться, что приводит к увеличению свойств электрического сопротивления элементов с течением времени (обычно называемое «старением»). Обычно требуется источник переменного напряжения для поддержания желаемой выходной мощности элементов путем постепенного повышение напряжения на элементах в течение срока их службы. Это старение в конечном итоге ограничивает срок службы и производительность нагревательного элемента.
Карбид кремния обладает множеством свойств, которые делают его пригодным для изготовления нагревательных элементов для очень высоких рабочих температур. Эта керамика не имеет жидкой фазы. Это означает, что элементы не будут провисать или деформироваться из-за ползучести при любой температуре, а внутри печи не требуются опоры. Кроме того, КЭН химически инертен по отношению к большинству технологических жидкостей, имеет высокую жесткость и низкий коэффициент теплового расширения. Нагреватели из карбида кремния могут достигать температуры нагрева от 1400 до 1500 ° C.
Графит - это минерал, состоящий из углерода, в котором атомы расположены в гексагональной структуре. Этот минерал, также его синтетическая форма, является хорошим проводником тепла и электричества. Графит может выделять тепло при температурах выше 2000 ° C. При высоких температурах его электрическое сопротивление значительно увеличивается. Более того, он выдерживает термические удары и не становится хрупким даже после быстрых циклов нагрева и охлаждения. Основным недостатком использования графита является его склонность к окислению при температуре около 500 ° C. Продолжение использования в этом диапазоне в конечном итоге приводит к расходу материала. Графитовые нагревательные элементы обычно используются в вакуумных печах, где кислород и другие газы удаляются из камеры нагрева. Отсутствие кислорода предотвращает не только окисление расплавленных металлов, но и самого нагревательного элемента.
Это тугоплавкие металлы со свойствами, аналогичными графиту при использовании в качестве нагревательных элементов. Среди этих металлов вольфрам имеет самую высокую рабочую температуру, но при этом он более дорогой. С точки зрения жизнеспособности молибден более популярен, поскольку он наименее дорог, но все же дороже графита. Как и графит, их можно использовать только в условиях вакуума, поскольку они обладают сильным сродством связывания с кислородом и даже с водородом и азотом. Они начинают окисляться при температуре от 300 до 500 ° C.
Типичным материалом PTC является резина, но также может быть и керамика. Каучук PTC изготовлен из полидиметилсилоксана (PDMS) с наночастицами углерода. Нагреватели PTC обладают уникальным свойством, в котором нагреватель поддерживает или ограничивает ток, увеличивая электрическое сопротивление при повышении температуры. Это делает материал безопасным и пригодным для использования в одежде. Первоначально нагреватель потребляет полную мощность и нагревается из-за своего удельного сопротивления. Сопротивление материала увеличивается с ростом тепла и затем действует как изолятор. Это достигается без необходимости в каком-либо цикле обратной связи.
Возврат к списку