Эффект Зеебека
Эффект Зеебека (ЭЗ, термоэлектрический эффект) определяет появление разницы потенциалов в месте соединения двух разнотипных материалов после нагрева определяемого участка. Эффект назван в честь ученого, который выявил его в 1822 году. В это время был проведен опыт нагрева контактов двух различных по типу сплава материалов, где был взят висмут и сурьма. Фиксирование полученных изменений было произведено за счет гальванометра. Удерживая участок стыка соединённых металлов, ученый обнаружил, что магнитная стрелка поменяла свое положение. Конечно, эта разница была не столь заметной, но дальнейшие опыты привели к требуемому результату.
Термоэлектрический эффект был обнаружен по причине возникновения движущейся электрической силы в рамках замкнутого контура, который состоял из разных материалов. Со временем было выявлено, что разница температур вызвана появляющимся термоэдс, следствием которого является возникновение тока в замкнутом контуре. На сегодняшний день эффект Зеебека полностью изучен и нашел свое применение во многих сфера деятельности человека. Но, самая высокая его востребованность наблюдается в производстве термопар.

Устройство
Термоэлектрический эффект заключается в производстве термопар, состоящих из 2-х разнородных сплавов, которые при контакте образуют замкнутый контур. Каждый металл имеет свой коэффициент Зеебека из-за чего между нагретым, и не нагретым проводником термопары появляется напряжение. Именно за счет этого напряжения и определяется термическая составляющая, т. к. оно прямо пропорционально разности температурных значений металлов.
Эффект Зеебека применим в большинстве термоэлектрических устройств. В большей части структур термоэлектрических генераторов включены термобатареи, набранные из полупроводниковых термоэлементов. Они могут быть соединены в параллельном или в последовательном порядке. Еще к ним относятся теплообменники нагреваемых и не нагреваемых спаев термобатарей.
В стандартной схеме цепи термоэлектрических генераторов имеются:
-
Полупроводниковый термоэлемент, выполненный из ветвей проводимости по типу p- и n-. У этих контактов знаки коэффициента термической движущей силы разные.
-
Пластины коммутации, имеющие нагреваемые и не нагреваемые спаи.
-
Активная нагрузка.
Во время включения термического элемента к нагрузке контура по нему начинает проходить постоянный ток, вызванный ЭЗ. Протекающее электричество поглощается спайками и выделяется в виде тепла. Для обеспечения высокого уровня ЭДС, подобные полупроводники должны обладать высокой электропроводностью. Чтобы получить существенный перепад температуры на промежуточном участке между спаями, достаточна их невысокая тепловая проводимость. Такими характеристиками наилучшим образом обладают материалы с высоким легированием.

Принципы действия
Главным образом эффект Зеебека действует по принципу того, что в замкнутом контуре двух разных материалов ЭДС появляется тогда, когда их контакты имеют разные температурные значения. Иными словами, значение ЭДС зависит от состава проводников и их температур. Если в наличии проводника есть температурный градиент, то по всей его длине будет наблюдаться увеличенная скорость электронов на нагретом конце и более низкая на ненагретом. По законам физики, электроны с нагретого конца направятся к противоположной стороне. В данном участке будет скапливаться отрицательный заряд. Противоположная сторона будет иметь накопление положительно заряженных частиц.
Заряды будут накапливаться до тех пор, пока потенциальное отличие не достигнет показателей, при которых электроны потекут обратно. В данных условиях потенциал начнет приобретать равновесие.
Эффекту Зеебека характерны различные свойства:
-
Между контактами возникает разность потенциалов. На разных контактирующих друг с другом проводках энергия Ферми также разная. При замыкании цепи потенциалы электронов будут иметь одинаковое состояние, а между контактами возникнет разность потенциалов. На контактах появится электрическое поле, локализованное в тонком приграничном слое.
-
В условиях замыкания цепи на проводках появится напряжение. Направление электрополя в двух контактах продвигается от большего к меньшему. При изменении термических значений напряжение также будет меняться. Но, в условиях изменения разности потенциалов изменится и электрическое поле в одном из контактов, результатом чего будет возникновение ЭДС в контуре. Если температура проводников будет равной, то объемная и контактная ЭДС приравняются к отметке 0.
-
Возникает фоновое увеличение. Если в твердом теле появляется градиент термического диапазона количество фонов, направляющихся к концу ненагретого проводника, увеличится. Их число будет возрастать сравнительно с теми, которые направляются к обратной стороне. Из-за столкновения с электронами фононы утянут за собой и другие. В итоге прогретый проводник накопит отрицательные заряды. А к нагретому проводнику будут прибывать положительные частицы, пока разница потенциалов не уравняется с эффектом увеличения. Разность потенциалов при низких температурах способна достигать параметров выше в сотни раз.
-
В проводниках с магнитными свойствами наблюдается магнонное увеличение. ЭДС возникает вследствие увеличения электронов магнонами.

Применение на практике
Устройства, созданные по принципу Зеебека, нашли широкое применение в быту и повседневной жизни людей. Например, приходя в сауну практически никто не задумывается, что температуру в ней контролируют за счет обычной термопары.
Термопара — это термоэлектрический измеритель, выполненный из двух разнородных металлов, которые между собой соединены за счет сварки. Один из ее концов помещают в самой сауне, а другой просто выводят наружу и подсоединяют к измерительному прибору. Когда воздух в сауне прогревается, разные концы термопары находятся в совершенно разной термической атмосфере и работаю при разных значениях. В таких условиях возникает градиент температур, что приводит к возникновению термического тока. Датчик к которому подключен ненагреваемый конец термопары преобразовывает термический ток в температурный показатель и автоматизирует подключение и отключение печи при наборе или спаде заданной температуры. Таким образом, осуществляется не только контроль, но и регуляция температуры в помещении сауны. Интересно знать, что если доступ к блоку управления температурой закрыт, например, в городских банях, то проводить управление температурой можно и без него. Для этого нужно можно на конец термопары намотать смоченную в холодной воде ветошь (ткань). Термопара охладится, и печь продолжит нагрев.
Применение
Примером использования эффекта Зеебека служат множество современных устройств: сенсоры напряжения, температурные датчики, измерители газового давления, термические электрогенераторы, контролеры интенсивности освещения и мн. др.
Приборы, работающие по принципу Зеебека, применяют:
-
В системах навигации;
-
В генераторах, промышленного и бытового значения;
-
В энергетически обеспечительных установках космического назначения;
-
В преобразователях солнечной энергии.
-
В отопительном оборудовании.
-
В установках служащих для перекачивания и переработки нефтяной продукции и газа;
-
В преобразователях тепловой энергии, вырабатываемой природными источниками.
Будущее
Эффектом Зеебека сильно заинтересованы ученые всего мира. Совсем недавно американские ученые разработали технологию, позволяющую использовать данный принцип с большой эффективностью. Основным недостатком современного оборудования является невозможность с помощью ЭЗ вырабатывать энергию в супер огромном количестве даже в условиях применения сильнолегированных металлов с высокой разностью температур.
Научные деятели предложили прибегнуть к немагнитным проводникам, которые можно устанавливать во внешнее магнитное поле с температурными пределами 2-20 К. В данном случае должен возникнуть огромный спиновый эффект Зеебека. Применение таких термических измерителей даст возможность значительно увеличить показания используемых приборов, расширить их функциональные возможности и сферы применения.
Самым простым примером является их применение в роли устройств для отвода тепла в системах кондиционирования и охлаждения. За счет того, что движущиеся частицы в данном случае будут отсутствовать, а дешевые материалы для их функционирования будут работоспособными много лет — это чрезвычайно выгодно. Термопары нового поколения даже смогут выдавать ток для подпитки приборов, которые сами его выделяют. Их можно применять для охлаждения компьютерного процессора. А спиновой эффект можно будет использовать для производства электронных устройств нового поколения.