Что такое термопара и как она работает?

Если вы хотите измерить температуру чего-то столь же горячего, как вулкан, обычный бытовой ртутный термометр абсолютно бесполезен. Воткните колбу ртутного термометра в вулканическую лаву (температура которой может быть намного выше 1000), и вы получите сюрприз: ртуть внутри мгновенно закипит (она превращается из жидкости в газ всего лишь при 674 ° F), а само стекло может даже расплавиться (если лава действительно горячая). Попробуйте измерить что-нибудь очень холодное (например, жидкий азот) с помощью ртутного термометра, и у вас возникнет обратная проблема: при температурах ниже -38 ° C ртуть представляет собой твердый кусок металла. Так как же измерить действительно горячие или холодные предметы? С хитрой парой электрических кабелей под названием термопара. Давайте подробнее разберемся, как это работает!




Какая связь между электричеством и теплом?

Вы заметили, что, когда мы говорим о проводимости в физике, мы можем иметь в виду две вещи? Иногда мы имеем в виду тепло, а иногда - электричество. Металл, такой как железо или золото, действительно хорошо проводит тепло и электричество; такой материал, как пластик, не очень хорошо проводит ни одно из них. 

Между тем, как металл проводит тепло, и тем, как он проводит электричество, существует прямая связь. 

Электрический ток проходит через металлы крошечными заряженными частицами внутри атомов, называемыми электронами. Когда электроны «маршируют» через материал, они уносят с собой электричество, как муравьи, несущие листья. Если электроны могут переносить электрическую энергию через металл, они также могут переносить тепловую энергию - и поэтому металлы, которые хорошо проводят электричество, также являются хорошими проводниками тепла. (Однако с неметаллами все не так просто, потому что тепло проходит через них другими, более сложными способами. Но для понимания термопар нам нужно учитывать только металлы.)

Томас Зеебек и термоэлектрический эффект

Предположим, вы воткнете железный пруток в огонь. Вы поймете, что нужно отпустить его довольно быстро, потому что тепло будет подниматься по металлу от огня к вашим пальцам. Но знаете ли вы, что электричество тоже идет по нагретому прутку? Первым, кто правильно подхватил эту идею, был немецкий физик Томас Зеебек (1770–1831), который обнаружил, что если два конца металла будут иметь разную температуру, через них будет протекать электрический ток. Это один из способов обозначить то, что сейчас известно как эффект Зеебека или термоэлектрический эффект. По мере дальнейшего исследования Зеебек обнаружил, что все еще интереснее. Если он соединял два конца металла вместе, ток не протекал; аналогично, если два конца металла имели одинаковую температуру, ток не протекал.




Основная идея термопары: два разнородных металла (серые кривые) соединены на двух концах. Если один конец термопары поместить на что-то горячее (горячий спай), а другой конец на что-то холодное (холодный спай), возникает напряжение (разность потенциалов). Вы можете измерить его, поместив вольтметр (V) через два соединения.

Зеебек повторил эксперимент с другими металлами, а затем попытался использовать вместе два разных металла. Теперь, если способ протекания электричества или тепла через металл зависит от внутренней структуры материала, вы, вероятно, можете увидеть, что два разных металла будут производить разное количество электричества, когда они нагреваются до одной температуры. Так что, если вы возьмете полосу одинаковой длины из двух разных металлов и соедините их вместе двумя концами, чтобы получилась петля. Затем окуните один конец (одно из двух стыков) во что-нибудь горячее (например, стакан с кипящей водой), а другой конец (другой стык) во что-то холодное. Тогда вы обнаружите, что электрический ток течет через петлю (которая фактически представляет собой электрическую цепь), и величина этого тока напрямую связана с разницей в температуре между двумя переходами.

Ключевой момент, который следует помнить об эффекте Зеебека, заключается в том, что величина создаваемого напряжения или тока зависит только от типа металла (или металлов), а также от разницы температур. Для создания эффекта Зеебека не нужно соединение между разными металлами: только разница температур. Однако на практике в термопарах используются металлические переходы.

Почему возникает эффект Зеебека?

Как мы уже видели, существует тесная связь между тем, насколько хорошо электричество течет в материале (электропроводность) и насколько хорошо течет тепло (теплопроводность). Мы можем думать об электронах в металле как о молекулах в газе, которые колеблются с кинетической энергией. Чем горячее газ, тем больше кинетической энергии у каждой молекулы в среднем и тем быстрее она колеблется. Подобно тому, как молекулы газа движутся быстрее, когда вы их нагреваете, электроны имеют тенденцию «диффундировать» больше, когда металл более горячий. Если вы нагреете один конец металлического стержня, электроны будут двигаться там быстрее и создадут чистый поток к более холодному концу. Это делает более горячий конец слегка положительно заряженным, а более холодный конец слегка отрицательно заряженным, создавая разницу напряжений - эффект Зеебека.

А как насчет эффекта Зеебека в соединении двух разных металлов? В одних материалах электроны движутся более свободно, чем в других. В этом основная разница между проводниками и изоляторами, а также между хорошими проводниками и плохими. Если вы соедините два разных металла вместе, свободные электроны будут перемещаться из одного материала в другой посредством своего рода диффузии. Так, например, если вы соедините кусок меди с куском железа, электроны имеют тенденцию перемещаться от железа к меди, в результате чего медь заряжается более отрицательно, а железо - более положительно. Если железо и медь соединены в петлю с двумя переходами, один из переходов получит положительное напряжение, а другой - равное и противоположное отрицательное напряжение, не создавая напряжения в целом. Но если один из стыков горячее другого, электроны будут легче диффундировать между металлами. Это означает, что напряжение на двух переходах будет отличаться на величину, которая зависит от разницы их температур. Это эффект Зеебека - и это основа работы большинства термопар.

Измерение температуры с помощью термопары

Если вы измеряете несколько известных температур с помощью этого устройства с металлическим спаем, вы можете выяснить формулу - математическое соотношение, - которое связывает ток и температуру. Это называется калибровкой: это как разметка шкалы на термометре. После калибровки у вас есть инструмент, который можно использовать для измерения температуры всего, что вам нравится.

Просто поместите один из металлических концов в ванну со льдом (или что-нибудь еще с точно известной температурой). Поместите другой металлический стык на предмет, температуру которого вы хотите узнать. Теперь измерьте происходящее изменение напряжения и, используя формулу, которую вы вычислили ранее, вы можете точно рассчитать температуру вашего объекта. Гениально! У нас есть пара металлов, которые соединены для измерения тепла (что по-гречески называлось «термос»). Вот почему это называется термопарой.

Что такое термопары на практике?

Для различных применений доступен широкий спектр различных термопар на основе металлов с высокой проводимостью, таких как железо, никель, медь, хром, алюминий, платина, родий и их сплавы . Иногда конкретная термопара выбирается исключительно потому, что она точно работает в определенном диапазоне температур, но условия, в которых она работает, также могут влиять на выбор (например, материалы в термопаре могут быть немагнитными , некоррозионными или стойкими к атакам. отдельными химическими веществами).

Для чего используются термопары?




Термопары широко используются в науке и промышленности, потому что они, как правило, очень точны и могут работать в огромном диапазоне действительно высоких и низких температур. Поскольку они генерируют электрические токи, они также полезны для автоматизированных измерений: гораздо проще получить электронную схему или компьютер для измерения температуры термопары через определенные промежутки времени, чем делать это самостоятельно с помощью термометра. Поскольку в них нет ничего особенного, кроме пары металлических полос, термопары также относительно недороги и (при условии, что используемые металлы имеют достаточно высокую температуру плавления) достаточно долговечны, чтобы работать в довольно суровых условиях.

Для нагревательных систем термопары являются незаменимым инструментом, который позволяет измерять показатели температуры системы, нагревательных элементов, обрабатываемых материалов. К примеру, на экструзионных линиях термопары устанавливаются на каждый кольцевой нагреватель, греющий цилиндр экструдера, в каждую зону нагрева для измерения температуры расплава, в фильеру для определения температуры на выходе.

В компании Элемаг вы можете купить различные типы термопар таких пар металлов, как хромель-алюмель (тип К), железо-константан (тип J) и хромель-копель (тип L).




Возврат к списку


Задать вопрос